Zinc inhibits cAMP-stimulated Cl secretion via basolateral K-channel blockade in rat ileum.

نویسندگان

  • Kazi Mirajul Hoque
  • Vazhaikkurichi M Rajendran
  • Henry J Binder
چکیده

Zn, an essential micronutrient and second most abundant trace element in cell and tissues, reduces stool output when administered to children with acute diarrhea. The mechanism by which Zn improves diarrhea is not known but could result from stimulating Na absorption and/or inhibiting anion secretion. The aim of this study was to investigate the direct effect of Zn on intestinal epithelial ion absorption and secretion. Rat ileum was partially stripped of serosal and muscle layers, and the mucosa was mounted in lucite chambers. Potential difference and short-circuit current were measured by conventional current-voltage clamp method. 86Rb efflux and uptake were assessed for serosal K channel and Na-K-2Cl cotransport activity, respectively. Efflux experiments were performed in isolated cells preloaded with 86Rb in the presence of ouabain and bumetanide, whereas uptake experiments were performed in low-Cl isotonic buffer containing Ba and ouabain. Neither mucosal nor serosal Zn affected glucose-stimulated Na absorption. In contrast, forskolin-induced Cl secretion was markedly reduced by serosal but not mucosal addition of Zn. Zn also substantially reversed the increase in Cl secretion induced by 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) with half-maximal inhibitory concentration of 0.43 mM. In contrast, serosal Zn did not alter Cl secretion stimulated by carbachol, a Ca-dependent agonist. Zn inhibited 8-BrcAMP-stimulated 86Rb efflux but not carbachol-stimulated 86Rb efflux. Zn had no effect on bumetanide-sensitive 86Rb uptake, Na-K-ATPase, or CFTR. We conclude from these studies that Zn inhibits cAMP-induced Cl secretion by blocking basolateral membrane K channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fenofibrate inhibits intestinal Cl- secretion by blocking basolateral KCNQ1 K+ channels.

Fibrates are peroxisome proliferator-activated receptor-alpha (PPARalpha) ligands in widespread clinical use to lower plasma triglyceride levels. We investigated the effect of fenofibrate and clofibrate on ion transport in mouse intestine and in human T84 colonic adenocarcinoma cells through the use of short-circuit current (I(sc)) and ion flux analysis. In mice, oral administration of fenofibr...

متن کامل

Estrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon.

Excessive Cl(-) secretion is the driving force for secretory diarrhea. 17β-Estradiol has been shown to inhibit Cl(-) secretion in rat distal colon through a nongenomic pathway. We examined whether 17β-estradiol inhibits Cl(-) secretion in an animal model of secretory diarrhea and the downstream effectors involved. The effect of 17β-estradiol on cholera toxin and heat-stable enterotoxin induced ...

متن کامل

NH(4)Cl inhibition of acid secretion: possible involvement of an apical K(+) channel in bullfrog oxyntic cells.

This study was undertaken to determine the mechanism by which ammonium chloride (NH(4)Cl) inhibits stimulated acid secretion in the bullfrog gastric mucosa. To this end, four possible pathways of inhibition were studied: 1) blockade of basolateral K(+) channel, 2) blockade of ion transport activity, 3) neutralization of secreted H(+) in the luminal solution, or 4) ATP depletion. Addition of nut...

متن کامل

The antifungal antibiotic, clotrimazole, inhibits Cl- secretion by polarized monolayers of human colonic epithelial cells.

Clotrimazole (CLT) prevents dehydration of the human HbSS red cell through inhibition of Ca++-dependent (Gardos) K+ channels in vitro (1993. J. Clin Invest. 92:520-526.) and in patients (1996. J. Clin Invest. 97:1227-1234.). Basolateral membrane K+ channels of intestinal crypt epithelial cells also participate in secretagogue-stimulated Cl- secretion. We examined the ability of CLT to block int...

متن کامل

Inhibition of cAMP-Activated Intestinal Chloride Secretion by Diclofenac: Cellular Mechanism and Potential Application in Cholera

Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84) cells with IC50 of ∼ 20 µM. The effect re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 288 5  شماره 

صفحات  -

تاریخ انتشار 2005